
TOPIC

Electricity and Magnetism - Section XI - Question 16

QUESTION

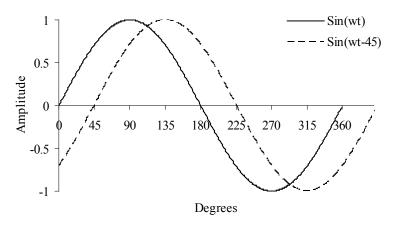
Which statement is true?

- (A) sin(wt) leads sin(wt-45°) by 45 degrees.
- (B) sin(wt) lags $sin(wt-45^{\circ})$ by 45 degrees.
- (C) sin(wt) leads sin(wt-45°) by 90 degrees.
- (D) sin(wt) lags sin(wt-45°) by 90 degrees.

HINT

There are three ways (forms) to represent signals; Trigonometric, Phasor and Rectangular. Trigonometric: $A \sin(wt + 0^{\circ})$

ringonometric.	A $SIII(wt + 0)$
Phasor (Polar):	$A \angle \theta^{\circ}$
Rectangular:	$A \cos(\theta) + j\sin(\theta)$

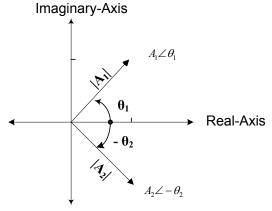

Note: In Electrical Engineering, i represents current. So, the imaginary part $[i=\sqrt{-1}]$ is represented with a *j*. Hence, $j = i=\sqrt{-1}$.

Given the waveforms in the trigonometric form (time domain), how do we determine which waveform is leading?

The leading waveform is the one that peaks first. Hence, sin(wt) leads sin(wt-45).

How to determine the phase shift between the two signals?

Phase shift is the angle difference at two common points. For example, sin(wt)=0 at 0° whereas sin(wt)=0 at 45°. Hence, it can be said that sin(wt) leads sin(wt-45) by 45°.

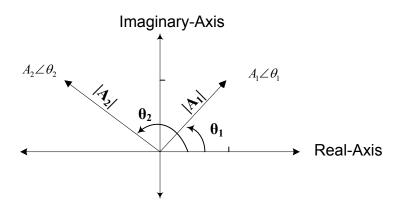

How do we write these two waveforms in polar form?

The leading waveform will have a reference angle 0° whereas the lagging waveform will have a negative phase shift. Hence, $\sin(wt) \rightarrow 1 \angle 0^\circ$ whereas $\sin(wt-45) \rightarrow 1 \angle -45^\circ$.

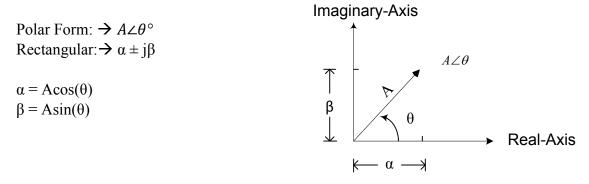
Converting from Trigonometric (Time) to Polar form (Frequency).

Trigonometric waveform: A $sin(wt + \theta^o)$

Polar Form: $A \angle \theta^{\circ}$ [In the frequency domain we compare signals of equal frequencies. Therefore, since the frequency is the same then the only values for comparison are the amplitude and the phase shift]


Note: You have to be cautious when comparing sine and cosine waveforms. In the frequency domain they both look the same but in reality they have a phase shift of 90°. So, be consistent, either convert to sine or both to cosine.

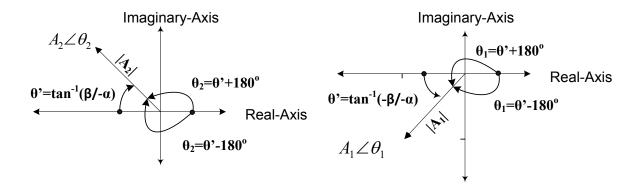
Incorrect: A $\sin(wt + \theta^{\circ}) \rightarrow A \angle \theta^{\circ}$ and A $\cos(wt + \theta^{\circ}) \rightarrow A \angle \theta^{\circ}$ Correct: A $\sin(wt + \theta^{\circ}) \rightarrow A \angle \theta^{\circ}$ A $\cos(wt + \theta^{\circ}) = A \sin(wt + \theta^{\circ} + 90^{\circ}) \rightarrow A \angle (\theta^{\circ} + 90^{\circ})$ Correct: A $\sin(wt + \theta^{\circ}) = A \cos(wt + \theta^{\circ} - 90^{\circ}) \rightarrow A \angle (\theta^{\circ} - 90^{\circ})$ A $\cos(wt + \theta^{\circ}) \rightarrow A \angle \theta^{\circ}$


How to determine which waveform is leading?

Think of it as a "counter-clockwise race". Hence, $A_2 \angle \theta_2^{\circ}$ leads $A_1 \angle \theta_1^{\circ}$.

The phase shift between the two waveforms is $\theta_2 - \theta_1$.

Converting from Polar to Rectangular.



Converting from Rectangular to Polar.

Note: for 2nd and 3rd quadrants an angle adjustment is required. Hence,

$$\theta = tan^{-1} \left(\frac{\beta}{\alpha}\right) \pm 180^{\circ}$$

CONTRIBUTOR

Stelios Ioannou