TOPIC

Electricity and Magnetism - Section XI - Question 6

QUESTION

The energy in Joules absorbed by the electrical element at time 2 seconds most nearly is

HINT

The electrical power of any electrical element is the product of current and voltage;

p = iv.

Current is the rate of change of charge with respect to time,

 $i(t) = \frac{dq}{dt},$

whereas voltage is the amount of energy required to take a single charge from point a to point b,

 $v = \frac{dw}{dq}.$

Hence, power can be defined as the rate of change of energy

 $p = \frac{dw}{dt}.$

Therefore, if power is the derivate of energy, then energy is the integral of power

$$w(t) = \int_0^t p(t)dt = \int_0^t (iv)dt$$

SOLUTION

Since, voltage is constant, then

$$w(t) = \int_{0}^{T} (iv)dt$$

= $\int_{0}^{2} (iv)dt$
= $\int_{0}^{1} (iv)dt + \int_{1}^{2} (iv)dt$
= $\int_{0}^{1} (1 \times 5)dt + \int_{1}^{2} (2 \times 5)dt$
= $5t|_{0}^{1} + 10t|_{1}^{2}$

=5 - 0 + 20 - 10 =15 Joules

ANSWER

(B)

CONTRIBUTOR

Stelios Ioannou