TOPIC

Electricity and Magnetism – Section XI – Question 7

QUESTION

A wire at 20°C has a resistance of 500Ω . The average temperature coefficient of this wire is 0.002/°C. The total resistance in ohms at 60°C most nearly is

- (A) 500
- (B) 540
- (C) 600
- (D) 650

HINT

Resistance is represented with the capital letter R and it is measured in ohms (Ω) .

$$R = \frac{\rho A}{l}$$

where

 ρ is the resistivity of the material (Ω .m),

A is the cross sectional area (m^2) and

l is the length (m).

The resistivity of any conductive material is temperature dependent

$$\rho = \rho_0 [1 + \alpha (T - T_0)]$$

Hence, resistance is also temperature dependent

$$R = R_0[1 + \alpha(T - T_0)]$$

where α is the temperature coefficient.

SOLUTION

In the problem the reference temperature is

$$T_o=20^{\circ}C$$

Hence

R_o=500 (resistance at reference temperature)

The new temperature

T=60°C and α =0.002/°C.

Substitute into the equation

R =
$$R_o$$
[1+ α (T-T_o)]
= 500[1+0.002(60-20)]
= 540 Ω .

ANSWER

(B)

CONTRIBUTOR

Stelios Ioannou