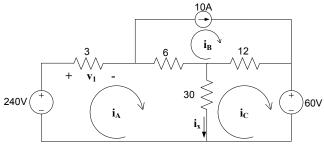

# **TOPIC**

Electricity and Magnetism – Section XI – Question 10

# **QUESTION**

The current in amperes through the 30  $\Omega$  resistor,  $i_x$  most nearly is




- (A) 4.15
- (B) 10.00
- (C) 15.35
- (D) 19.50

### **HINT**

Kirchoff's voltage law (KVL) has already been presented in previous problems. KVL is a very useful technique to calculate unknown voltages. In addition, KVL can be extended to what is known as *Mesh Analysis* to calculate mesh currents in a circuit. There are two simple steps in performing mesh analysis;

1. Assign Clockwise Mesh Currents.

Think of meshes as independent territories or houses that are distinctively separated by fences. So, the following circuit has 3 meshes.



2. Add the voltages in every loop. Remember, from Ohm's law that

$$v = iR$$
.

KVL Mesh A: 
$$-240 + 3i_A + 6(i_A - i_B) + 30(i_A - i_C) = 0$$

[when in mesh A then current  $i_A$  is dominant so it is  $i_A$  minus the rest].

KVL Mesh B:

$$i_{\rm B} = 10$$

[On the top wire there is a current source so the current is known. Also, on that wire only mesh current  $i_B$  is traveling in the same direction. So, by inspection  $i_B = 10$ . We perform mesh analysis to calculate the mesh currents. If we know the current then we do not perform a KVL equation in the mesh].

#### KVL Mesh C:

$$30(i_C-i_A) + 12(i_C-i_B) + 60 = 0.$$

[When in mesh C then the current  $i_C$  is dominant so it is  $i_C$  minus the rest].

Substituting for  $i_B$ =10 and then simplifying and solving these two equations then

$$i_{A}$$
=19.5A

 $i_{\rm B}$ =10A

 $i_{\rm C}$ =15.35A.

### **SOLUTION**

Current  $i_x$  is between two mesh currents  $i_A$  and  $i_C$ . Hence,  $i_x = i_A - i_C$  [the current in the same direction minus the current in the opposite].

$$i_x = 19.5 - 15.35$$
  
= 4.15A

## **ANSWER**

(A)

## **CONTRIBUTOR**

Stelios Ioannou