
TOPIC

Electricity and Magnetism - Section XI – Question 16

QUESTION

Which statement is true?

- (A) sin(wt) leads sin(wt–45°) by 45 degrees.
- (B) $\sin(wt)$ lags $\sin(wt-45^\circ)$ by 45 degrees.
- (C) sin(wt) leads sin(wt–45°) by 90 degrees.
- (D) sin(wt) lags sin(wt–45°) by 90 degrees.

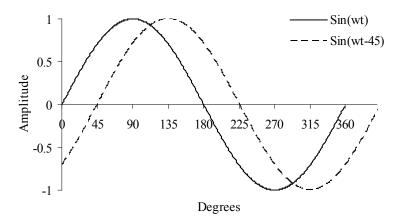
HINT

There are three ways (forms) to represent signals; Trigonometric, Phasor and Rectangular.

Trigonometric: A $\sin(wt + \theta^{o})$

Phasor (Polar): $A \angle \theta^{\circ}$

Rectangular: $A \cos(\theta) + i\sin(\theta)$


Note: In Electrical Engineering, i represents current. So, the imaginary part $[i=\sqrt{-1}]$ is represented with a j. Hence, $j = i=\sqrt{-1}$.

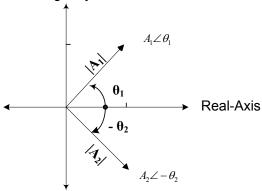
Given the waveforms in the trigonometric form (time domain), how do we determine which waveform is leading?

The leading waveform is the one that peaks first. Hence, sin(wt) leads sin(wt-45).

How to determine the phase shift between the two signals?

Phase shift is the angle difference at two common points. For example, $\sin(wt)=0$ at 0° whereas $\sin(wt)=0$ at 45° . Hence, it can be said that $\sin(wt)$ leads $\sin(wt-45)$ by 45° .

How do we write these two waveforms in polar form?


The leading waveform will have a reference angle 0° whereas the lagging waveform will have a negative phase shift. Hence, $\sin(wt) \rightarrow 1 \angle 0^{\circ}$ whereas $\sin(wt-45) \rightarrow 1 \angle -45^{\circ}$.

Converting from Trigonometric (Time) to Polar form (Frequency).

Trigonometric waveform: A $sin(wt + \theta^{o})$

Polar Form: $A \angle \theta^{\circ}$ [In the frequency domain we compare signals of equal frequencies. Therefore, since the frequency is the same then the only values for comparison are the amplitude and the phase shift]

Imaginary-Axis

Note: You have to be cautious when comparing sine and cosine waveforms. In the frequency domain they both look the same but in reality they have a phase shift of 90°. So, be consistent, either convert to sine or both to cosine.

Incorrect: A $\sin(wt + \theta^{\circ}) \rightarrow A \angle \theta^{\circ}$ and A $\cos(wt + \theta^{\circ}) \rightarrow A \angle \theta^{\circ}$

Correct: A $\sin(wt + \theta^{\circ}) \rightarrow A \angle \theta^{\circ}$

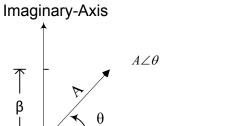
A $cos(wt + \theta^{\circ}) = A sin(wt + \theta^{\circ} + 90^{\circ}) \rightarrow A \angle (\theta^{\circ} + 90^{\circ})$

Correct: A $\sin(wt + \theta^{\circ}) = A \cos(wt + \theta^{\circ} - 90^{\circ}) \rightarrow A \angle (\theta^{\circ} - 90^{\circ})$

A cos(wt + θ°) $\rightarrow A \angle \theta^{\circ}$

How to determine which waveform is leading?

Think of it as a "counter-clockwise race". Hence, $A_2 \angle \theta_2^{\circ}$ leads $A_1 \angle \theta_1^{\circ}$.


The phase shift between the two waveforms is $\theta_2 - \theta_1$.

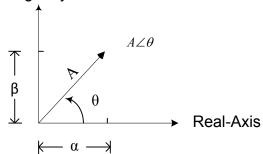
Imaginary-Axis θ_{2} θ_{1} θ_{2} θ_{1} θ_{2} θ_{3} $\theta_{4} \angle \theta_{1}$ θ_{1} θ_{2} θ_{3} $\theta_{4} \angle \theta_{1}$ θ_{5} θ_{1} θ_{2} θ_{3} $\theta_{4} \angle \theta_{1}$ θ_{5} θ_{6} θ_{1} θ_{2} θ_{3} $\theta_{4} \angle \theta_{1}$ θ_{5} θ_{6} θ_{7} θ_{8} θ_{8} θ_{8} θ_{8} θ_{9} θ_{1} θ_{9} θ_{1}

Converting from Polar to Rectangular.

Polar Form:
$$\rightarrow A \angle \theta^{\circ}$$

Rectangular: $\rightarrow \alpha \pm j\beta$

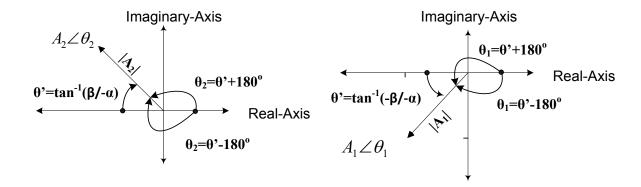
$$\alpha = A\cos(\theta)$$
$$\beta = A\sin(\theta)$$


$$\leftarrow \alpha \longrightarrow Real-Axis$$

Converting from Rectangular to Polar.

Rectangular:
$$\rightarrow \alpha \pm j\beta$$

Polar Form: $\rightarrow A \angle \theta^{\circ}$


$$A = \sqrt{\alpha^2 + \beta^2}$$
$$\theta = tan^{-1} \left(\frac{\beta}{\alpha}\right)$$

Imaginary-Axis

Note: for 2nd and 3rd quadrants an angle adjustment is required. Hence,

$$\theta = tan^{-1} \left(\frac{\beta}{\alpha}\right) \pm 180^{\circ}$$

SOLUTION

sin(wt) leads sin(wt–45) by 45°. Because sin(wt) peaks first, sin(wt)=0 at 0° whereas sin(wt-45)=0 at 45°.

ANSWER

(B)

CONTRIBUTOR

Stelios Ioannou