
TOPIC

Fluids – Section X – Question 5

QUESTION

Consider the water storage tank shown below. Q_i and Q_0 are the volumetric flow rates at the inlet and outlet, respectively and *h* is the liquid level height in the tank. The orifice at the bottom of the tank is sharp edged and has a diameter of 2 cm. The inlet flow rate Q_i required to maintain a constant liquid level of 3 m is (in m³/s) most nearly is

- (A) 0.0015
- (B) 0.0024
- (C) 0.0058
- (D) 0.0096

HINTS

- To maintain a constant liquid level, Q_i must equal Q_0 .
- Q_0 can be related to the liquid level height h.

SOLUTION

Since the liquid level height is to be constant, the inlet flow rate must equal the outlet flow rate $(Q_i = Q_0)$. The outlet flow rate is found from

$$Q_o = A_0 C \sqrt{2gh}$$

where A_0 is the orifice area and *C* is the coefficient of discharge = $C_v C_c$. The orifice area is

$$A_0 = \frac{\pi d^2}{4}$$
$$= \frac{\pi (2)^2}{4}$$
$$= 3.14 \text{ cm}^2$$

The coefficient of discharge is

$$C = C_{\nu}C_{c}$$

= 0.98 × 0.62
= 0.61

 $= 0.000314m^2$

The volumetric flow out, and hence the required flow in, is then $Q_o = (0.000314)(0.61)\sqrt{2(9.8)(3)}$ $= 0.0015m^3/s$

ANSWER

(A)

CONTRIBUTOR

Scott Campbell