TOPIC

Mathematics – Section I – Question 3

QUESTION

The Newton-Raphson method formula for finding the square root of a real number R from the equation $x^2 = R$ is

$$(A) x_{i+1} = \frac{x_i}{2}$$

(A)
$$x_{i+1} = \frac{x_i}{2}$$

(B) $x_{i+1} = \frac{3x_i}{2}$

(C)
$$x_{i+1} = \frac{1}{2} \left(x_i + \frac{R}{x_i} \right)$$

(D)
$$x_{i+1} = \frac{1}{2} \left(3x_i - \frac{R}{x_i} \right)$$

HINT

Rewrite the equation in the form f(x) = 0, that is,

$$f(x) = x^2 - R = 0$$

Now apply the Newton's formula

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

SOLUTION

The Newton's formula for finding the root of an equation is given by

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Since

$$x^{2} = R$$

$$f(x) = x^{2} - R = 0$$

$$f'(x) = 2x$$

$$x_{i+1} = x_i - \frac{x_i^2 - R}{2x_i}$$

$$= \frac{2x_i^2 - x_i^2 + R}{2x_i}$$

$$= \frac{x_i^2 + R}{2x_i}$$

$$= \frac{1}{2} \left(x_i + \frac{R}{x_i} \right)$$

ANSWER

(C)

CONTRIBUTOR

Autar Kaw