TOPIC

Engineering Probability and Statistics - Section II - Question 3

QUESTION

Four data points have been observed as follows:

i	x_i	y_i
1	2.0	5.1
2	1.5	4.2
3	3.6	7.5
4	5.7	10.4

Using linear least-square regression, the equation that best fits this data is

(A) y = 2.3 + 1.5x

- (B) y = 2.3 + 2.1x
- (C) y = 1.5 + 2.1x
- (D) y = 1.5 + 1.5x

HINT

For linear regression equation $y = a + bx + \varepsilon$, the parameters *a* and *b* can be estimated by the least-square method as

 $\hat{b} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$ and $\hat{a} = \bar{y} - \hat{b}\bar{x}$

SOLUTION

The data averages are $\bar{x} = \frac{2+1.5+3.6+5.7}{4}$ = 3.2 $\bar{y} = \frac{5.1 + 4.2 + 7.5 + 10.4}{4}$ = 6.8The numerator $\sum_{i=1}^{4} (x_i - \bar{x})(y_i - \bar{y}) = 15.74$ and the denominator $\sum_{i=1}^{4} (x_i - \bar{x})^2 = 10.74.$ Therefore, ore, $\hat{b} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$ $=\frac{15.74}{10.74}$ = 1.47and $\hat{a} = \bar{y} - \hat{b}\bar{x}$ $= 6.8 - 1.47 \times 3.2$

Therefore, the equation that best fits this data is

y = 1.5 + 2.1x

ANSWER

(C)

CONTRIBUTOR

Michael Weng