TOPIC

Engineering Probability and Statistics - Section II - Question 4

QUESTION

The yield of a chemical process is being studied. The past 5 days of plant operation have resulted in the following yields: 91.5, 88.7, 90.8, 89.9, and 92.1. Test hypotheses are H₀: mean yield $\mu = 90\%$ versus H₁: $\mu \neq 90\%$. The P-value of this statistical test most nearly is

- (A) 0.0500
- (B) 0.2515
- (C) 0.3125
- (D) 0.4975

HINT

Since the variance of the yield is unknown, *t* distribution must be used. The P-value for a twosided test is $2P(T_{n-1} > |t_0|)$, where n-1 are the degrees of freedom. Reject the null hypothesis H₀ at $(1-\alpha)$ significance level if $\alpha < P$ -value.

SOLUTION

The sample size is n = 5. Compute the sample average and sample standard deviation as $\bar{x} = 90.6$, and s = 1.8. Calculate

$$t_0 = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$$

= $\frac{90.6 - 90}{1.8/\sqrt{5}}$
= 0.745
P-value = $2P(T_4 > 0.745)$
= 0.4975

ANSWER

(D)

CONTRIBUTOR

Michael Weng