TOPIC

Thermodynamics - Section XII - Question 5

QUESTION

2 kg of air in a closed-rigid vessel at 1 bar and $25^{\circ}C$ is heated until its temperature is $100^{\circ}C$. The heat added to the air (in kJ) most nearly is

- (A) 0
- (B) 108
- (C) 120
- (D) 150

HINT

- Apply the closed system energy balance
- Note that since the vessel is rigid, there is no work
- The constant volume heat capacity of air is 0.717 kJ/kg-K

SOLUTION

For a closed system $m\Delta U = Q-W$ and since it is a rigid vessel, W = 0Assuming air to be an ideal gas,

 $\Delta U = C_{\nu} \Delta T$

Thus

 $Q = mC_{\nu}\Delta T$ = 2kg × 0.717kJ/kg-K × 75K = 108kJ

Note that $\Delta T=75$ whether in K or centigrade.

ANSWER

(B)

CONTRIBUTOR

Scott Campbell